Super complete-antimagicness of Amalgamation of any Graph

R.M Prihandini^{1,3}, Ika Hesti Agustin^{1,4}, Dafik^{1,2}, Ridho Alfarisi^{1,3}

¹ CGANT-University of Jember, Jember, Indonesia

² Department of Mathematics Education, University of Jember, Jember, Indonesia

³ Department of Elementary School Teacher Education, University of Jember, Jember, Indonesia

⁴ Department of Mathematics, University of Jember, Jember, Indonesia

Abstract—Let H_i be a finite collection of simple, nontrivial and undirected graphs and let each H_i have a fixed vertex v_i called a terminal. The amalgamation H_i as v_i as a terminal is formed by taking all the H_i 's and identifying their terminal. When H_i are all isomorphic graphs, for any positif integer nwe denote such amalgamation by G =Amal(H, v, n), where n denotes the number of copies of H. The graph G is said to be an (a, d) - H-antimagic total graph if there exist a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1, 2, \dots, |V(G)| + |E(G)|\}$ such that for all subgraphs isomorphic to H, the total H-weights W(H) = $\sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e) \quad form \quad an \quad arithmetic$ sequence $\{a, a + d, a + 2d, ..., a + (n - 1)d\}$, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. An (a, d) – H-antimagic total labeling f is called super if the smallest labels appear in the vertices. In this paper, we study a super (a, d) - Hantimagic total labeling of G = Amal(H, v, n) and its disjoint union.

Keywords—Super H-antimagic total graph, Amalgamation of graph, arithmetic sequence.

I. INTRODUCTION

A graph *G* is said to be an (a, d) - H-antimagic total graph if there exist a bijective function $f: V(G) \cup E(G) \rightarrow$ $\{1,2, ..., |V(G)| + |E(G)|\}$ such that for all subgraphs of *G* isomorphic to *H*, the total *H*-weights w(H) = $\sum_{v \in V(H)} f(v) + \sum_{e \in E(H)} f(e)$ form an arithmetic sequence $\{a, a + d, a + 2d, ..., a + (n - 1)d\}$, where *a* and *d* are positive integers and *n* is the number of all subgraphs of *G* isomorphic to *H*. If such a function exist then *f* is called an(a, d) - H-antimagic total labeling of *G*. An(a, d) - H-antimagic total labeling *f* is called super if $f: V(G) \rightarrow$ $\{1, 2, ..., |V(G)|\}$.

There many articles have been published in many journals, some of them can be cited in [2, 3, 7, 8] and [9, 10, 11, 12, 13]. For connected graph, Inayah *et al.* in [7] proved that, for *H* is a non-trivial connected graph and $k \ge 2$ is an integer, *shack*(*H*, *v*, *k*) which contains exactly *k* subgraphs isomorphic to *H* is *H*-super antimagic. They

only covered a connected version of shackle of graph when a vertex as a connector, and their paper did not cover all feasible d. Our paper attempt to solve a super (a, d) – Hantimagic total labeling of G = Amal(H, v, n) and its disjoint union when *H* is a complete graph for feasible *d*. To show those existence, we will use a special technique, namely an integer set partition technique. We consider the partition $P_{m,d}^n(i,j)$ of the set $\{1, 2, ..., mn\}$ into n columns with $n \ge 2$, *m*-rows such that the difference between the sum of the numbers in the (j + 1)th *m*-rows and the sum of the numbers in the *j*th *m*-rows is always equal to the constant *d*,where $j = 1, 2, \dots, n - 1.$ The partition $P_{m,d}^{n,s}(i,j,k)$ of the set $\{1, 2, ..., mns\}$ into nscolumns with $n, s \ge 2$, *m*-rows such that the difference between the sum of the numbers in the (k + 1)th *m*-rows and the sum of the numbers in the kth m-rows is always equal to the constant d for j = 1, 2, ..., n, where k =1, 2, ..., k - 1. Thus these sums form an arithmetic sequence with the difference d. We need to establish some lemmas related to the partition $P_{m,d}^n(i,j)$ and $P_{m,d}^{n,s}(i,j,k)$. These lemmas are useful to develop the super (a, d) - Hantimagic total labeling of G = Amal(H, v, n) and G =sAmal(H, v, n).

II. SOME USEFUL LEMMAS

Let *G* be an amalgamation of any graph *H*, denoted by G = Amal(H, v, n). The graph *G* is a connected graph with $|V(G)| = p_G$, $|E(G)| = q_G$, $|V(H)| = p_H$, and $E(H)| = q_H$. The vertex set and edge set of the graph G = Amal(H, v, n) can be split into following sets: $V(G) = \{A\} \cup \{x_{ij}; 1 \le i \le p_H - 1, 1 \le j \le n\}$ and $E(G) = \{e_{lj}; 1 \le l \le q_H, 1 \le j \le n\}$. Let *n*, *m* be positive integers with $n \ge 2$ and $m \ge 3$. Thus $|V(G)| = p_G = n(p_H - 1) + 1$ and $|E(G)| = q_G = nq_H$.

Furthermore, let *G* be a disjoint union of amalgamation of graph *H*, denoted by G = sAmal(H, v, n) and *s* bean odd positive integer. The graph *G* is a disconnected graph with $|V(G)| = p_G, |E(G)| = q_G, |V(H)| = p_H$, and $|E(H)| = q_H$. The vertex set and edge set of the graph $G = q_H$.

 $sAmal(H, v, n) \text{ can be split into following sets:} V(G) = \{A^k; 1 \le k \le s\} \cup \{\{x_{ij}\}^k; 1 \le i \le p_H - 1, 1 \le j \le n, 1 \le k \le s\} \text{ and } E(G) = \{\{e_{lj}\}^k; 1 \le j \le n, 1 \le l \le q_H, 1 \le k \le s\}.$ Let n, m, and odd s be positive integers with $n \ge 2$ and $m, s \ge 3$. Thus $|V(G)| = p_G = s(n(p_H - 1) + 1)$ and $|E(G)| = q_G = snq_H.$

The upper bound of feasible *d* for G = Amal(H, v, n) and G = sAmal(H, v, n) to be a super (a, d) - H –antimagic total labeling follows the following lemma [2].

Lemma 2.1 [2]

Let *G* be a simple graph of order *p* and size *q*. If *G* is super (a, d) - H - antimagic total labeling then $d \leq \frac{\{(p_{\{G\}}-p_{\{H\}})p_{\{H\}}+(q_{\{G\}}-q_{\{H\}})q_{\{H\}}\}}{n-1}$, for $p_{\{G\}} = |V(G)|, q_{\{G\}} = |E(G)|, p_{\{H\}} = |V(H)|, q_{\{H\}} = |E(H)|, \text{and } n = |H_j|$. **Corollary 2.1**

For $n \ge 2$, if the graph G = Amal(H, v, n) admits super (a, d) - H-antimagic total labeling then $d \le p_H^2 + q_H^2 - p_H$

Corollary 2.2

For $n \ge 2$ and odd $s \ge 3$, if the disconnected graph G = sAmal(H, v, n) admits super (a, d) - H-antimagic total labeling then $d \le p_H^2 + q_H^2 - p_H + \frac{\{(s-1)p_-H\}}{sn-1}$

We recall a partition $P_{\{m,d\}}^n(i,j)$ introduced in [4]. We will use the partition for a linear combination in developing a bijection of vertex and edge label of the main theorem.

Lemma 2.2[4]

Let *n* and *m*be positive integers. The sum of $P_{\{m,d\}}^n(i,j) = \{(i-1)n+j, 1 \le i \le m\}$ and $P_{\{m,d\}}^n(i,j) = \{(j-1)m+i; 1 \le i \le m\}$ form an aritmatic sequence of difference $d \in \{m, m^2\}$, respectively.

III. THE RESULTS

The Connected Graph

The following four lemmas are useful for the existence of super (a, d) - H antimagic total labeling G = Amal(H, v, n).

Lemma 3.1

Let *n* and *m* be positive integers. For $1 \le j \le n$, the sum of $P_{\{m,d_1\}}^n(i,j) = \{1 + ni - j; 1 \le i \le m\}$ and

 $P^n_{\{m,d_2\}}(i,j) = \{mn + i - mj; 1 \le i \le m\}$ form an arithmetic sequence of differences $d_1 = -m, d_2 = -m^2$.

Proof.

By simple calculation, for j = 1, 2, ..., n, it gives $\sum_{i=1}^{m} P_{\{m,d_1\}}^n(i,j) = P_{\{m,d_1\}}^n(j) \leftrightarrow P_{\{m,d_1\}}^n(j) = \left\{\frac{n}{2}(m^2 + m) + m - mj\right\} \leftrightarrow P_{\{m,d_1\}}^n \wedge n(j) = \left\{\frac{n}{2}(m^2 + m), \frac{n}{2}(m^2 + m) - m, \frac{n}{2}(m^2 + m) - 2m, ..., \frac{n}{2}(m^2 + m)m - mn\} and \sum_{i=1}^{m} P_{\{m,d_2\}}^n(j) \leftrightarrow P_{\{m,d_2\}}^n(j) = \left\{\left\{\frac{m}{2}(2mn + m + 1)\right\} - m^2j\right\} \leftrightarrow$ $P_{\{m,d_2\}}^n(j) = \{\frac{m}{2}(2mn+m+1) - m^2, \frac{m}{2}(2mn+m+1) - 2m^2, \dots, \frac{m}{2}(2mn+m+1) - m^2n\}.$ It is easy to see that the differences of those sequences are $d_1 = -m, d_2 = -m^2$. It concludes the proof. **Lemma 3.2**

Let *n* and *m* be positive integers. For $1 \le j \le n$, the sum of

$$P_{\{m,d_3\}}^n(i,j) = \begin{cases} i + (j-1)m; \ 1 \le i \le m; i \text{ odd} \\ n(i-2) + 2j; \ 1 \le i \le m; i \text{ even} \end{cases}$$

form an aritmatic sequence of difference $d_3 = \frac{1}{2}m^2 + m$. **Proof.**

By simple calculation, it gives $\sum_{i=1}^{m} P_{\{m,d_3\}}^n(i,j) = P_{\{m,d_3\}}^n(j) \leftrightarrow P_{\{m,d_3\}}^n(j) = \left\{ \left(\frac{m^2}{2} + m\right)j + \frac{m}{4}(mn - 2n - m) \right\} \leftrightarrow P_{\{m,d_3\}}^n(j) = \left\{ \left(\frac{m^2}{2} + m\right) + \frac{m}{4}(mn - 2n - m), (m^2 + 2m) + \frac{m}{4}(mn - 2n - m), \dots, \left(\frac{m^2}{2} + m\right)n + \frac{m}{4}(mn - 2n - m) \right\}.$ It concludes the proof.

Lemma 3.3

Let *n* and *m* be positive integers. For $1 \le j \le n$, the sum of

$$P^{n}_{\{m,d_{4}\}}(i,j) = \begin{cases} mn - mj + i; \ 1 \le i \le m; i \text{ odd} \\ ni + 2 - 2j; \ 1 \le i \le m; i \text{ even} \end{cases}$$

form an aritmatic sequence of difference $d_4 = -\left(\frac{1}{2}m^2 + m\right)$.

m.).

Proof. By simple calculation, it gives $\sum_{i=1}^{m} P_{\{m,d_4\}}^n(i,j) = P_{\{m,d_4\}}^n(j) \leftrightarrow P_{\{m,d_4\}}^n(j) = \left\{\frac{m}{4}(3mn + m + 2n + 4) - \left(\frac{m^2}{2} + m\right)\right\} \leftrightarrow P_{\{m,d_4\}}^n(j) = \left\{\frac{m}{4}(3mn + m + 2n + 4) - \frac{m^2}{2} - m\right), \left(\frac{m}{4}(3mn + m + 2n + 4) - m^2 - 2m\right), \dots, \frac{m}{4}(3mn + m + 2n + 4) - \frac{3m^2}{2} - 3m)\right\}.$ We have the desired difference.

Now we are ready to present the main theorem related to the existence of super (a, d) - H antimagicness of the connected graph G = Amal(H, v, n), in the following theorem.

Theorem 3.1

For $n \ge 2$, the graph G = Amal(H, v, n) admits a super (a, d) – H antimagic total labeling with feasible $d = m_1 - m_2 + m_3^2 - m_4^2 + \frac{1}{2}m_5^2 + m_5 - (\frac{1}{2}m_6^2 + m_6) + r_1 - r_2 + r_3^2 - r_4^2 + (\frac{1}{2}r_5^2 + r_5) - (\frac{1}{2}r_6^2 + r_6)$ **Proof.**

Let *m* and *r* be positive integers, with $m = p_H - 1$ and $r = q_H$. For i = 1, 2, ..., m and j = 1, 2, ..., n, by Lemma 2.2, 3.1, 3.2 and 3.3 we define the vertex and the edge labels as a linear combination of $P_{\{m_1,m_1\}}^n(i,j)$; $P_{\{m_2,-m_2\}}^n(i,j)$; $P_{\{m_2,-m_2\}}^n(i,j)$; $P_{\{m_2,-m_2\}}^n(i,j)$; $P_{\{m_2,-m_2\}}^n(i,j)$;

International Journal of Advanced Engineering Research and Science (IJAERS) https://dx.doi.org/10.22161/ijaers.4.5.32

$$\begin{split} \overline{P_{\{m_4,-m_4^2\}}^n(i,j);P_{\{m_5t_2^-m_5^++m_5\}}^n(i,j);} \\ and P_{\{m_6,-\left(\frac{1}{2}m_6^2+m_6\right)\}}^n(i,j) \text{ as follows:} \\ f_-1(A) &= 1, \text{ and} \\ f_1(A) &= 1, \text{ and} \\ f_1(x_{\{i,j\}}) &= \{P_{\{m_1,m_1\}}^n \oplus 1\} \cup \{P_{\{m_2,-m_2\}}^n \oplus [n(m_1)+1]\} \\ &\cup \left\{P_{\{m_3,m_3^2\}}^n \oplus [n(m_1+m_2)+1]\right\} \\ &\cup \left\{P_{\{m_3,m_3^2\}}^n \oplus [n(m_1+m_2+m_3)+1]\right\} \\ &\cup \left\{P_{\{m_4,-m_4^2\}}^n \oplus [n(m_1+m_2+m_3)+1]\right\} \\ &\cup \left\{P_{\{m_5t_2^-m_5^++m_5\}}^n \oplus [n\Sigma_{\{t=1\}}^4m_t+1]\right\} \\ &\cup \left\{P_{\{m_6,-\left(\frac{1}{2}m_6^2+m_6\right)\}}^n \oplus [n\Sigma_{\{t=1\}}^5m_t+1]\right\} \end{split}$$

$$\begin{split} f_1(e_{\{l,j\}}) &= \{P^n_{\{r_1,r_1\}} \bigoplus [mn+1]\} \\ &\cup \{P^n_{\{r_2,-r_2\}} \bigoplus [n(r_1)+mn+1]\} \\ &\cup \{P^n_{\{r_3,r_3^2\}} \bigoplus [n(r_1+r_2)+mn+1]\} \\ &\cup \{P^n_{\{r_4,-r_4^2\}} \bigoplus [n(r_1+r_2+r_3)+mn+1]\} \\ &\cup \{P^n_{\{r_5,r_2^2r_5^2+r_5\}} \bigoplus [n \Sigma^4_{\{t=1\}}r_t+mn+1]\} \\ &\cup \{P^n_{\{r_6,-\left(\frac{1}{2}r_6^2+r_6\right)\}} \bigoplus [n \Sigma^5_{\{t=1\}}r_t+mn+1]\} \end{split}$$

The vertex labeling *f* is a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., p_G + q_G\}$. The total edge-weights of G = Amal(H, v, n) under the labeling *f*, for j = 1, 2, ..., n, constitute the following sets:

$$W_{\{f_1\}} = \sum f_1(A) + \sum f_1(x_{\{i,j\}}) + \sum f_1(e_{\{i,j\}})$$

$$= C_{\{m,d\}}^{n} + [m_1 - m_2 + m_3^2 - m_4^2 + \frac{1}{2}m_5^2 + m_5 - \left(\frac{1}{2}m_6^2 + m_6\right) + r_1 - r_2 + r_3^2 - r_4^2 + \left(\frac{1}{2}r_5^2 + r_5\right)$$

It is easy that the set of total edge-weights $W_{\{f_1\}}$ consists of an arithmetic sequence of the smallest value a and the difference $d = m_1 - m_2 + m_3^2 - m_4^2 + \frac{1}{2}m_5^2 + m_5 - (\frac{1}{2}m_6^2 + m_6) + r_1 - r_2 + r_3^2 - r_4^2 + (\frac{1}{2}r_5^2 + r_5) - (\frac{1}{2}r_6^2 + r_6)$.Since the biggest d is attained when $d = m^2 + r^2$ then, for $m = p_H - 1$ and $r = q_H$, it gives $0 \le d \le p_H^2 + q_H^2 - p_H \leftrightarrow 0 \le (p_H - 1)^2 + q_H^2 \le p_H^2 + q_H^2 - p_H \leftrightarrow 0 \le p_H^2 + q_H^2 - p_H - (p_H - 1) \le p_H^2 + q_H^2 - p_H$. It concludes the proof.

Fig.1: Super (142,23)-H- antimagic total covering of graph G=Amal(C₅, v, 4)

The Disjoint Union Graph

The following lemmas are useful for the existence of super (a, d) - H antimagic total labeling disjoint union of the graph *G*, denoted by G = sAmal(H, v, n).

Lemma 3.5

Let *n*, *m* and *s* be positive integers $1 \le j \le n$; $1 \le k \le s$, the sum of $P_{\{m,d_7\}}^{\{n,s\}}(i,j,k) = \{(k-1)m+i+(j-1)ms; 1\le i\le m; 1\le j\le n; 3\le k\le s\}$ and the sum of $P_{\{m,d_8\}}^{\{n,s\}}(i,j,k) = \{(j-1)s+i+k+(i-1)ns; 1\le i\le m\}$ form an arithmetic sequence of differences $d_5 = m^2$ and $d_6 = m$.

Proof.

By simple calculation, for j = 1, 2, ..., n, it gives $\sum_{i=1}^{m} P_{\{m,d_5\}}^{\{ns\}}(j,k) = P_{\{m,d_5\}}^{\{ns\}}(k) \leftrightarrow P_{\{m,d_5\}}^{\{ns\}}(j,k) = \{\frac{1}{2}(m-m^2) + m^2k + m^2s(j-1)\} \leftrightarrow P_{\{m,d_5\}}^{\{ns\}}(j,k) = \{\frac{1}{2}(m-m^2) + m^2, \frac{1}{2}(m-m^2) + 2m^2, ..., \frac{1}{2}(m-m^2) + m^2, \frac{1}{2}(m-m^2) + (s+1)m^2, \frac{1}{2}(m-m^2) + (s+2)m^2, ..., \frac{1}{2}(m-m^2) + (s+1)m^2, \frac{1}{2}(m-m^2) + (s+2)m^2, ..., \frac{1}{2}(m-m^2) + snm^2\}.$ Furthermore $\sum_{i=1}^{m} P_{\{m,d_6\}}^{\{n,s\}}(j,k) = P_{\{m,d_6\}}^{\{n,s\}}(k) \leftrightarrow P_{\{m,d_6\}}^{\{n,s\}}(j,k) = \{\frac{ns}{2}(m^2-m) + m((j-1)s+k)\} \leftrightarrow P_{\{m,d_6\}}^{\{n,s\}}(j,k) = \{\frac{ns}{2}(m^2-m) + m, \frac{ns}{2}(m^2-m) + (s+1)m, \frac{ns}{2}(m^2-m) + (s+2)m, ..., \frac{ns}{2}(m^2-m) + (s+1)m, \frac{ns}{2}(m^2-m) + (s+2)m, ..., \frac{ns}{2}(m^2-m) + snm\}.$ It concludes the proof.

c (k

Lemma 3.6

Let ,*m* and sbe positive integers $1 \le j \le n$; $1 \le k \le s$, of $P_{\{m,d_7\}}^{\{n,s\}}(i,j,k) = \{ms + i - mk + (n - mk)\}$ the sum *j*)*ms*; $1 \le i \le m$ } and the sum of $P_{\{m,d_8\}}^{\{n,s\}}(i,j,k) = \{i - 1\}$ $k - s(j - 1) + (ns)i; 1 \le i \le m; 1 \le j \le n; 3 \le n$ $k \leq s$ form an arithmetic sequences of difference $d_7 =$ $-m^2$ and $d_8 = -m$. **Proof.**

By simple calculation, for j = 1, 2, ..., n, it gives $\sum_{i=1}^{m} P_{\{m,d_7\}}^{\{n,s\}}(j,k) = P_{\{m,d_7\}}^{\{n,s\}}(k) \leftrightarrow P_{\{m,d_7\}}^{\{n,s\}}(j,k) =$ $\left\{\frac{m}{2}(2ms+m+1)+m^2sn-m^2(js+k)\right\}$ $P_{\{m,d_7\}}^{\{n,s\}}(j,k) = \{\frac{m}{2}(2ms+m+1) + m^2sn - m^2(s+m+1) + m^2sn - m^2(s+m+1)\}$ 1), $\frac{m}{2}(2ms + m + 1) + m^2sn - m^2(s + m^2)$ 2), ..., $\frac{m}{2}(2ms + m + 1) + m^2sn - m^2(2s), \frac{m}{2}(2ms + m)$ m + 1) + $m^2 sn - m^2 (2s + 1)$, ..., $\frac{m}{2}(2ms + m + 1) + m^2 sn - m^2(ns + s)$ }. Furthermore $\Sigma_{i=1}^m P^{\{n,s\}}_{\{m,d_8\}}(j,k) = P^{\{n,s\}}_{\{m,d_8\}}(k) \leftrightarrow P^{\{n,s\}}_{\{m,d_8\}}(j,k) =$ $\left\{\frac{1}{2}(m^2+m)(ns+1)+ms-m(js+k)\right\}\leftrightarrow$ $P_{\{m,d_o\}}^{\{n,s\}}(j,k) = \{\frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 1)\}$ 1), $\frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + 1) + ms - m(s + 2), ..., \frac{1}{2}(m^2 + m)(ns + m)$ $m)(ns + 1) + ms - m(2s), \frac{1}{2}(m^2 + m)(ns + m)(ns$ $ms - m(2s + 1), \dots, \frac{1}{2}(m^2 + m)(ns + 1) + ms$ m(ns + s). It concludes the proof.

Now we are ready to present the main theorem related to the existence of super (a, d) - H antimagicness of the disconnected graph G = sAmal(H, v, n), in the following

Theorem 3.2

theorem.

For $n \ge 2$ and odd $s \ge 3$, the graph G = sAmal(H, v, n)admits a super (a, d) - H antimagic total labeling with feasible $d = m_1 - m_2 + m_3^2 - m_4^2 + r_1 - r_2 + r_3^2 - r_4^2$. Proof.

For i = 1, 2, ..., m and j = 1, 2, ..., n, by Lemma 3.5 and 3.6 we define the vertex and the edge labels as a linear combination of

$$P_{\{m_1,m_1\}}^{\{n,s\}}(i,j,k), P_{\{m_2,-m_2\}}^{\{n,s\}}(i,j,k), P_{\{m_3,m_3^2\}}^{\{n,s\}}(i,j,k), \text{ and } P_{\{m_4,-m_4^2\}}^{\{n,s\}}(i,j,k) \text{ as follows:}$$

$$f_1(A^k) = k, \text{ and for } i = 1, 2, \dots, m-2$$

$$f_2(x_{\{i,j\}}^k) = \left\{ P_{\{m_1,m_1\}}^{\{n,s\}} \bigoplus s \right\} \cup \left\{ P_{\{m_2,-m_2\}}^{\{n,s\}} \bigoplus s(nm_1+1) \right\}$$

$$\cup \left\{ P_{\{m_3,m_3^2\}}^{\{n,s\}} \bigoplus s(n(m_1+m_2)+1) \right\} \cup \left\{ P_{\{m_4,-m_4^2\}}^{\{n,s\}} \bigoplus s(n(m_1+m_2+m_3)+1) \right\}$$

$$\begin{aligned} f_{2}(x_{\{i,j\}}^{\epsilon}) &= \\ & \begin{cases} s(n+1)+1-js-2k+s[n(m-2)+1], \\ for \ 1 \leq k \leq \frac{\{s-1\}}{2}, i = m-1 \\ s(n+2)+1-js-2k+s[n(m-2)+1], \\ for \ \frac{s+1}{2} \leq i \leq s, i = m-1 \\ \frac{1}{2}(1-s)+js+k+ns+s[n(m-2)+1], \\ for \ \frac{s+1}{2} \leq k \leq s, i = m \\ \frac{1}{2}(1-3s)+js+k+ns+s[n(m-2)+1], \\ for \ \frac{s+1}{2} \leq k \leq s, i = m \\ \frac{1}{2}(1-3s)+js+k+ns+s[n(m-2)+1], \\ for \ \frac{s+1}{2} \leq k \leq s, i = m \\ f_{2}(e_{\{l,j\}}^{k}) = \left\{ P_{\{r_{1},r_{1}\}}^{\{n,s\}} \oplus s[(mn+1)] \right\} \\ & \cup \left\{ P_{\{r_{2},r_{2}\}}^{\{n,s\}} \oplus s[(n(r_{1})+mn+1)] \right\} \\ & \cup \left\{ P_{\{r_{3},r_{3}\}}^{\{n,s\}} \oplus s[(n(r_{-}1))+n(r_{2}) \\ + mn+1) \right\} \cup \left\{ P_{\{r_{4}-r_{4}^{2}\}}^{n,s} \oplus s[(n(r_{1})+mn+1)] \right\} \end{aligned}$$

 $+ n(r_2) + n(r_3) + mn + 1)]$ The vertex labeling f_2 is a bijective function $f_2: V(G) \cup$ $E(G) \rightarrow \{1, 2, \dots, p_G + q_G\}$. The total edge-weights of G = sAmal(H, v, n) under the labeling f, for j =1,2,..., n and k = 1,2,...,s, constitute the following sets:

$$W_{\{f_2\}} = \sum f_2(A^k) + \sum f_2(x_{\{i,j\}}^k)_{1 \le i \le m-2} + \sum f_2(x_{\{i,j\}}^k)_{m-1 \le i \le m} + \sum f_1(e_{\{l,j\}}^k)$$
$$W_{\{f_2\}} = \{C_{\{m,d\}}^{\{n,s\}} + [m_1 - m_2 + m_3^2 - m_4^2 + r_1 - r_2 + r_3^2 - r_4^2]\}(js+k)$$

It is easy that the set of total edge-weights $W_{\{f_2\}}$ consists of an arithmetic sequence of the smallest value a and the $d = m_1 - m_2 + m_3^2 - m_4^2 + r_1 - r_2 + r_3^2 - m_4^2 + r_1 - r_2 + r_3^2 - r_3^$ difference r_4^2 . Since the biggest d is attained when $d = m^2 + r^2$ then, for $m = p_H - 3$ and $r = q_H$, it gives $0 \le d \le p_H^2 +$ $q_{H}^{2} - p_{H} + \frac{(s-1)p_{H}}{sn-1} \leftrightarrow 0 \le (p_{H} - 3)^{2} + q_{H}^{2} \le p_{H}^{2} + q_{H}^{2}$ $q_H^2 - p_H + \frac{(s-1)p_H}{sn-1}$ It concludes the proof.

IV. CONCLUSION

We have shown the existence of super antimagicness of amalgamation of complete graph H, denoted by G =Amal(H, v, n) for connected one and G = sAmal(H, v, n)for disconnected one, where H is any graph. By using a partition technique we can prove that Amal(H, v, n)admits a super (a, d) - H antimagic total labeling with $d = m_1 - m_2 + m_3^2 - m_4^2 + \frac{1}{2}m_5^2 + m_5 - (\frac{1}{2}m_6^2 + m_5)$ m_6 + $r_1 - r_2 + r_3^2 - r_4^2 + \left(\frac{1}{2}r_5^2 + r_5\right) - \left(\frac{1}{2}r_6^2 + r_6\right)$, but for G = sAmal(H, v, n), the existence of its super antimagicness only holds for s odd with $d = m_1 - m_2 + m_2$ $m_3^2 - m_4^2 + r_1 - r_2 + r_3^2 - r_4^2$. We also note that if the amalgamation of complete graph H contains a subgraph as a connector then finding the labels for feasible d remains widely open. Thus, we propose the following open problem.

Open Problem

Let *H* be a subgraph of *G* and G = sAmal(H, v, n). For *s* even, does *G* admit a super (a, d) - H antimagic total labeling for $n \ge 2$ and feasible *d*?

ACKNOWLEDGEMENTS

We gratefully acknowledge the support from DP2M research grant HIKOM-DIKTI and CGANT University of Jember of year 2016.

REFERENCES

- [1] M. Ba·ca, L. Brankovic, M. Lascsakova, O., Phanalasy, A. Semani·cova-Fe·nov·c³kova, On dantimagic labelingsof plane graphs, Electr. J. Graph Theory Appli., 1(1), 28-39, (2013)
- [2] Dafik, A.K. Purnapraja, R Hidayat, Cycle-Super Antimagicness of Connected and Disconnected TensorProduct of Graphs, Procedia Computer Science, 74, (2015), 9399
- [3] Dafik, Slamin, Dushyant Tanna, Andrea Semani·cova-Fe·nov·c³kova, Martin Ba·ca, Constructions of Hantimagicgraphs using smaller edge-antimagic graphs, Ars Combinatoria, 100 (2017), In Press
- [4] Dafik, Moh. Hasan, Y.N. Azizah, Ika Hesti Agustin, A Generalized Shackle of Any Graph H Admits aSuper H-Antimagic Total Labeling, Mathematics in Computer Science Journal, (2016). Submitted
- [5] J.L. Gross, J. Yellen and P. Zhang, Handbook of Graph Theory, Second Edition, CRC Press, Taylor andFrancis Group, 2014
- [6] N. Inayah, A.N.M. Salman and R. Simanjuntak, On (a;
 d) ¡H-antimagic coverings of graphs, J. Combin.Math. Combin. Comput. 71 (2009), 273281.
- [7] N. Inayah, R. Simanjuntak, A. N. M. Salman, Super (*a*; *d*)-H-antimagic total labelings for shackles of aconnected graph H, The Australasian Journal of Combinatorics, 57 (2013), 127138.
- [8] P. Jeyanthi, P. Selvagopal, More classes of Hsupermagic Graphs, Intern. J. of Algorithms, Computing andMathematics 3(1) (2010), 93-108.
- [9] A. Llado and J. Moragas, Cycle-magic graphs, Discrete Math. 307 (2007), 2925 2933.
- [10] T.K. Maryati, A. N. M. Salman, E.T. Baskoro, J. Ryan, M. Miller, On H- supermagic labelings for certainshackles and amalgamations of a connected graph, Utilitas Mathematica, 83 (2010), 333-342.
- [11] A. A. G. Ngurah, A. N. M. Salman, L. Susilowati, Hsupermagic labeling of graphs, Discrete Math., 310 (2010), 1293-1300.

- [13] Roswitha, M. and Baskoro, E. T., H-magic covering on some classes of graphs, American Institute of Physics Conference Proceedings 1450 (2012), 135-138.
- [14] R. Simanjuntak, M. Miller and F. Bertault, Two new (a; d)-antimagic graph labelings, Proc. Eleventh Australas. Workshop Combin. Alg. (AWOCA) (2000), 179189.